next up previous
Next: 参考文献 Up: オーディオのための交流理論入門 Previous: 11 出力段の位相補償


A. 公式

A..1 三角関数

A..1.0.1 三角比と三角関数

図 140: 三角比
\begin{figure}\input{figs/trig}
\end{figure}

sin$\displaystyle \theta$ = $\displaystyle {\frac{{b}}{{r}}}$ (377)
cos$\displaystyle \theta$ = $\displaystyle {\frac{{a}}{{r}}}$ (378)
tan$\displaystyle \theta$ = $\displaystyle {\frac{{b}}{{a}}}$ = $\displaystyle {\frac{{\sin \theta}}{{\cos \theta}}}$ (379)

$\displaystyle \theta$ = sin-1$\displaystyle {\frac{{b}}{{r}}}$ = cos-1$\displaystyle {\frac{{a}}{{r}}}$ = tan-1$\displaystyle {\frac{{b}}{{a}}}$ (380)

sin2$\displaystyle \theta$ + cos2$\displaystyle \theta$ = $\displaystyle {\frac{{b^2}}{{r^2}}}$ + $\displaystyle {\frac{{a^2}}{{r^2}}}$ = $\displaystyle {\frac{{a^2+b^2}}{{r^2}}}$ = 1 (381)

A..1.0.2 微積分


$\displaystyle {\frac{{d \sin x}}{{dx}}}$ = cos x (382)
$\displaystyle {\frac{{d \cos x}}{{dx}}}$ = -sin x (383)
$\displaystyle \int$sin x dx = -cos x (384)
$\displaystyle \int$cos x dx = sin x (385)

A..1.0.3 加法定理


sin(a$\displaystyle \pm$b) = sin a cos b$\displaystyle \pm$cos a sin b (386)
cos(a$\displaystyle \pm$b) = cos a cos b$\displaystyle \mp$sin a sin b (387)
tan(a$\displaystyle \pm$b) = $\displaystyle {\frac{{\tan a \pm \tan b}}{{1 \mp \tan a \tan b}}}$ (388)

A..1.0.4 オイラーの公式


ejx = cos x + j sin x (389)
cos x = $\displaystyle {\frac{{e^{jx} + e^{-jx}}}{{2}}}$ (390)
sin x = $\displaystyle {\frac{{e^{jx} - e^{-jx}}}{{2j}}}$ (391)

A..2 双曲線関数


sinh x = $\displaystyle {\frac{{e^x-e^{-x}}}{{2}}}$ (392)
cosh x = $\displaystyle {\frac{{e^x+e^{-x}}}{{2}}}$ (393)
tanh x = $\displaystyle {\frac{{\sinh x}}{{\cosh x}}}$ (394)


A..3 ラプラス変換

関数 f (x) のラプラス変換 F(s) は,次の式で定義される.

F(s) = $\displaystyle \int_{0}^{{\infty}}$e-sxf (x) dx (395)

入力信号をラプラス変換したものと伝達関数とを掛け合わせたものを ラプラス逆変換すると,出力信号が得られます.

F(s) f (t)
1 impulse
$ {\frac{{1}}{{s}}}$ 1 (unit step)
$ {\frac{{1}}{{s+a}}}$ e-at
$ {\frac{{1}}{{s^2}}}$ t
$ {\frac{{1}}{{s(s+a)}}}$ $ {\frac{{1}}{{a}}}$(1 - e-at)
$ {\frac{{1}}{{(s+a)(s+b)}}}$ $ {\frac{{1}}{{b-a}}}$(e-at - e-bt)
$ {\frac{{s}}{{(s+a)(s+b)}}}$ $ {\frac{{1}}{{a-b}}}$(ae-at - be-bt)
$ {\frac{{1}}{{(s+a)^2}}}$ te-at
$ {\frac{{s}}{{(s+a)^2}}}$ te-at(1 - at)
$ {\frac{{1}}{{s^2-a^2}}}$ $ {\frac{{1}}{{a}}}$sinh(at)
$ {\frac{{s}}{{s^2-a^2}}}$ cosh(at)
$ {\frac{{1}}{{s^2+a^2}}}$ $ {\frac{{1}}{{a}}}$sin(at)
$ {\frac{{s}}{{s^2+a^2}}}$ cos(at)
$ {\frac{{1}}{{(s+b)^2+a^2}}}$ $ {\frac{{1}}{{a}}}$e-btsin(at)
$ {\frac{{s}}{{(s+b)^2+a^2}}}$ e-bt$ \bigl($cos(at) - $ {\frac{{b}}{{a}}}$sin(at)$ \bigr)$
$ {\frac{{1}}{{s(s+a)^2}}}$ $ {\frac{{1}}{{a^2}}}$(1 - e-at - ate-at)
$ {\frac{{1}}{{s(s+a)(s+b)}}}$ $ {\frac{{1}}{{ab(a-b)}}}$[(a - b) + be-at - ae-bt]
$ {\frac{{1}}{{s[(s+b)^2+a^2]}}}$ $ {\frac{{1}}{{a^2+b^2}}}$$ \bigl[$1 - e-bt$ \bigl($cos at + $ {\frac{{b}}{{a}}}$sin at$ \bigr)$$ \bigr]$


F(s) = $\displaystyle {\frac{{1}}{{s(s+a)}}}$  
  = $\displaystyle {\frac{{1/a}}{{s}}}$ - $\displaystyle {\frac{{1/a}}{{s+a}}}$  
  = $\displaystyle {\frac{{1}}{{a}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s}}}$ - $\displaystyle {\frac{{1}}{{s+a}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{a}}}$(1 - e-at)  


F(s) = $\displaystyle {\frac{{1}}{{(s+a)(s+b)}}}$  
  = $\displaystyle {\frac{{\frac{1}{-a+b}}}{{s+a}}}$ + $\displaystyle {\frac{{\frac{1}{a-b}}}{{s+b}}}$  
  = $\displaystyle {\frac{{1}}{{b-a}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s+a}}}$ - $\displaystyle {\frac{{1}}{{s+b}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{b-a}}}$(e-at - e-bt)  


F(s) = $\displaystyle {\frac{{s}}{{(s+a)(s+b)}}}$  
  = $\displaystyle {\frac{{\frac{-a}{-a+b}}}{{s+a}}}$ + $\displaystyle {\frac{{\frac{-b}{a-b}}}{{s+b}}}$  
  = $\displaystyle {\frac{{1}}{{a-b}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{a}}{{s+a}}}$ - $\displaystyle {\frac{{b}}{{s+b}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{a-b}}}$(ae-at - be-bt)  


F(s) = $\displaystyle {\frac{{1}}{{s^2-a^2}}}$  
  = $\displaystyle {\frac{{1}}{{(s-a)(s+a)}}}$  
  = $\displaystyle {\frac{{\frac{1}{2a}}}{{s-a}}}$ + $\displaystyle {\frac{{\frac{1}{-2a}}}{{s+a}}}$  
  = $\displaystyle {\frac{{1}}{{2a}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s-a}}}$ - $\displaystyle {\frac{{1}}{{s+a}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{2a}}}$(eat - e-at)  
  = $\displaystyle {\frac{{1}}{{a}}}$sinh at  


F(s) = $\displaystyle {\frac{{s}}{{s^2-a^2}}}$  
  = $\displaystyle {\frac{{s}}{{(s-a)(s+a)}}}$  
  = $\displaystyle {\frac{{\frac{a}{2a}}}{{s-a}}}$ + $\displaystyle {\frac{{\frac{-a}{-2a}}}{{s+a}}}$  
  = $\displaystyle {\frac{{1}}{{2}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s-a}}}$ + $\displaystyle {\frac{{1}}{{s+a}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{2}}}$(eat + e-at)  
  = cosh at  


F(s) = $\displaystyle {\frac{{1}}{{s^2+a^2}}}$  
  = $\displaystyle {\frac{{1}}{{(s-ja)(s+ja)}}}$  
  = $\displaystyle {\frac{{\frac{1}{2ja}}}{{s-ja}}}$ + $\displaystyle {\frac{{\frac{1}{-2ja}}}{{s+ja}}}$  
  = $\displaystyle {\frac{{1}}{{2ja}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s-ja}}}$ - $\displaystyle {\frac{{1}}{{s+ja}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{2ja}}}$(ejat - e-jat)  
  = $\displaystyle {\frac{{1}}{{a}}}$sin at  


F(s) = $\displaystyle {\frac{{s}}{{s^2+a^2}}}$  
  = $\displaystyle {\frac{{s}}{{(s-ja)(s+ja)}}}$  
  = $\displaystyle {\frac{{\frac{ja}{2ja}}}{{s-ja}}}$ + $\displaystyle {\frac{{\frac{-ja}{-2ja}}}{{s+ja}}}$  
  = $\displaystyle {\frac{{1}}{{2}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s-ja}}}$ + $\displaystyle {\frac{{1}}{{s+ja}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{2}}}$(ejat + e-jat)  
  = cos at  


F(s) = $\displaystyle {\frac{{1}}{{(s+b)^2+a^2}}}$  
  = $\displaystyle {\frac{{1}}{{(s+b-ja)(s+b+ja)}}}$  
  = $\displaystyle {\frac{{\frac{1}{-b+ja+b+ja}}}{{s+b-ja}}}$ + $\displaystyle {\frac{{\frac{1}{-b-ja+b-ja}}}{{s+b+ja}}}$  
  = $\displaystyle {\frac{{\frac{1}{2ja}}}{{s+b-ja}}}$ + $\displaystyle {\frac{{\frac{1}{-2ja}}}{{s+b+ja}}}$  
  = $\displaystyle {\frac{{1}}{{2ja}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s+b-ja}}}$ - $\displaystyle {\frac{{1}}{{s+b+ja}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{2ja}}}$(e(-b+ja)t - e(-b-ja)t)  
  = $\displaystyle {\frac{{1}}{{2ja}}}$(e-btejat - e-bte-jat)  
  = $\displaystyle {\frac{{1}}{{2ja}}}$e-bt(ejat - e-jat)  
  = $\displaystyle {\frac{{1}}{{a}}}$e-btsin at  


F(s) = $\displaystyle {\frac{{s}}{{(s+b)^2+a^2}}}$  
  = $\displaystyle {\frac{{s}}{{(s+b-ja)(s+b+ja)}}}$  
  = $\displaystyle {\frac{{\frac{-b+ja}{-b+ja+b+ja}}}{{s+b-ja}}}$ + $\displaystyle {\frac{{\frac{-b-ja}{-b-ja+b-ja}}}{{s+b+ja}}}$  
  = $\displaystyle {\frac{{\frac{-b+ja}{2ja}}}{{s+b-ja}}}$ + $\displaystyle {\frac{{\frac{-b-ja}{-2ja}}}{{s+b+ja}}}$  
  = $\displaystyle {\frac{{1}}{{2}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s+b-ja}}}$ + $\displaystyle {\frac{{1}}{{s+b+ja}}}$$\displaystyle \Bigr)$ - $\displaystyle {\frac{{b}}{{2ja}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s+b-ja}}}$ - $\displaystyle {\frac{{1}}{{s+b+ja}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{2}}}$(e(-b+ja)t + e(-b-ja)t) - $\displaystyle {\frac{{b}}{{2ja}}}$(e(-b+ja)t - e(-b-ja)t)  
  = $\displaystyle {\frac{{1}}{{2}}}$(e-btejat + e-bte-jat) - $\displaystyle {\frac{{b}}{{2ja}}}$(e-btejat - e-bte-jat)  
  = $\displaystyle {\frac{{1}}{{2}}}$e-bt(ejat + e-jat) - $\displaystyle {\frac{{b}}{{2ja}}}$e-bt(ejat - e-jat)  
  = + e-btcos at - $\displaystyle {\frac{{b}}{{a}}}$e-btsin at  
  = e-bt$\displaystyle \Bigl($cos at - $\displaystyle {\frac{{b}}{{a}}}$sin at$\displaystyle \Bigr)$  


F(s) = $\displaystyle {\frac{{1}}{{s(s+a)(s+b)}}}$  
  = $\displaystyle {\frac{{\frac{1}{ab}}}{{s}}}$ + $\displaystyle {\frac{{\frac{1}{-a(-a+b)}}}{{s+a}}}$ + $\displaystyle {\frac{{\frac{1}{-b(-b+a)}}}{{s+b}}}$  
  = $\displaystyle {\frac{{\frac{1}{ab}}}{{s}}}$ + $\displaystyle {\frac{{\frac{1}{a(a-b)}}}{{s+a}}}$ + $\displaystyle {\frac{{\frac{1}{b(b-a)}}}{{s+b}}}$  
  = $\displaystyle {\frac{{1}}{{ab(a-b)}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{a-b}}{{s}}}$ + $\displaystyle {\frac{{b}}{{s+a}}}$ - $\displaystyle {\frac{{a}}{{s+b}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{ab(a-b)}}}$((a - b) + be-at - ae-bt)  


F(s) = $\displaystyle {\frac{{1}}{{s[(s+b)^2+a^2]}}}$  
  = $\displaystyle {\frac{{1}}{{s(s+b-ja)(s+b+ja)}}}$  
  = $\displaystyle {\frac{{\frac{1}{(b-ja)(b+ja)}}}{{s}}}$ + $\displaystyle {\frac{{\frac{1}{-b+ja(-b+ja+b+ja)}}}{{s+b-ja}}}$ + $\displaystyle {\frac{{\frac{1}{-b-ja(-b-ja+b-ja)}}}{{s+b+ja}}}$  
  = $\displaystyle {\frac{{\frac{1}{b^2+a^2}}}{{s}}}$ + $\displaystyle {\frac{{\frac{1}{2ja(ja-b)}}}{{s+b-ja}}}$ + $\displaystyle {\frac{{\frac{1}{2ja(ja+b)}}}{{s+b+ja}}}$  
  = $\displaystyle {\frac{{\frac{1}{b^2+a^2}}}{{s}}}$ - $\displaystyle {\frac{{\frac{ja+b}{2ja(a^2+b^2)}}}{{s+b-ja}}}$ - $\displaystyle {\frac{{\frac{ja-b}{2ja(a^2+b^2)}}}{{s+b+ja}}}$  
  = $\displaystyle {\frac{{1}}{{a^2+b^2}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s}}}$ - $\displaystyle {\frac{{\frac{ja+b}{2ja}}}{{s+b-ja}}}$ - $\displaystyle {\frac{{\frac{ja-b}{2ja}}}{{s+b+ja}}}$$\displaystyle \Bigr)$  
  = $\displaystyle {\frac{{1}}{{a^2+b^2}}}$$\displaystyle \Bigl[$$\displaystyle {\frac{{1}}{{s}}}$ - $\displaystyle {\frac{{1}}{{2}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s+b-ja}}}$ + $\displaystyle {\frac{{1}}{{s+b+ja}}}$$\displaystyle \Bigr)$ - $\displaystyle {\frac{{b}}{{2ja}}}$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{s+b-ja}}}$ - $\displaystyle {\frac{{1}}{{s+b+ja}}}$$\displaystyle \Bigr)$  
f (t) = $\displaystyle {\frac{{1}}{{a^2+b^2}}}$$\displaystyle \Bigl[$1 - $\displaystyle {\frac{{1}}{{2}}}$(e(-b+ja)t + e(-b-ja)t) - $\displaystyle {\frac{{b}}{{2ja}}}$(e(-b+ja)t - e(-b-ja)t)$\displaystyle \Bigr]$  
  = $\displaystyle {\frac{{1}}{{a^2+b^2}}}$$\displaystyle \Bigl[$1 - $\displaystyle {\frac{{1}}{{2}}}$e-bt(ejat + e-jat) - $\displaystyle {\frac{{b}}{{2ja}}}$e-bt(ejat - e-jat)$\displaystyle \Bigr]$  
  = $\displaystyle {\frac{{1}}{{a^2+b^2}}}$$\displaystyle \Bigl($1 - e-btcos at - $\displaystyle {\frac{{b}}{{a}}}$e-btsin at$\displaystyle \Bigr)$  
  = $\displaystyle {\frac{{1}}{{a^2+b^2}}}$$\displaystyle \Bigl[$1 - e-bt$\displaystyle \Bigl($cos at - $\displaystyle {\frac{{b}}{{a}}}$sin at$\displaystyle \Bigr)$$\displaystyle \Bigl]$  

A..3.1 1次低域通過伝達関数

F(s) = $\displaystyle {\frac{{\frac{1}{sC}}}{{R + \frac{1}{sC}}}}$ = $\displaystyle {\frac{{1}}{{sCR + 1}}}$ = $\displaystyle {\frac{{\frac{1}{CR}}}{{s+\frac{1}{CR}}}}$ = $\displaystyle {\frac{{\omega_0}}{{s+\omega_0}}}$ (396)

A..3.1.1 インパルスレスポンス


V2(s) = F(s)V1(s)  
  = F(s)  
  = $\displaystyle {\frac{{\omega_0}}{{s+\omega_0}}}$  
v2(t) = $\displaystyle \omega_{0}^{}$e-$\scriptstyle \omega_{0}$t  

A..3.1.2 インディシャルレスポンス


V2(s) = F(s)V1(s)  
  = F(s) . $\displaystyle {\frac{{1}}{{s}}}$  
  = $\displaystyle {\frac{{\omega_0}}{{s(s+\omega_0)}}}$  
v2(t) = 1 - e-$\scriptstyle \omega_{0}$t  

A..3.2 2次低域通過伝達関数

F(s) = $\displaystyle {\frac{{\omega_0^2}}{{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}}}$ (397)
D = $ {\frac{{\omega_0^2}}{{Q^2}}}$ -4$ \omega_{0}^{2}$ = $ \omega_{0}^{2}$(1/Q2 - 4) とする.

A..3.2.1 D > 0 すなわち Q < 1/2 の場合


p = - $\displaystyle {\frac{{\omega_0}}{{2Q}}}$$\displaystyle \pm$$\displaystyle {\frac{{\omega_0}}{{2}}}$$\displaystyle \sqrt{{\frac{1}{Q^2}-4}}$  
  = $\displaystyle \alpha$$\displaystyle \pm$$\displaystyle \beta$  
p1 + p2 = 2$\displaystyle \alpha$ = - $\displaystyle {\frac{{\omega_0}}{{Q}}}$  
p1 - p2 = 2$\displaystyle \beta$ = $\displaystyle \omega_{0}^{}$$\displaystyle \sqrt{{\frac{1}{Q^2}-4}}$  

A..3.2.1.1 インパルスレスポンス

V2(s) = F(s)  
  = $\displaystyle {\frac{{\omega_0^2}}{{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}}}$  
  = $\displaystyle {\frac{{\omega_0^2}}{{(s-p_1)(s-p_2)}}}$  
v2(t) = $\displaystyle {\frac{{\omega_0^2}}{{p_1 - p_2}}}$(ep1t - ep2t)  
  = $\displaystyle {\frac{{\omega_0^2}}{{2\beta}}}$(e($\scriptstyle \alpha$+$\scriptstyle \beta$)t - e($\scriptstyle \alpha$-$\scriptstyle \beta$)t)  
  = $\displaystyle {\frac{{\omega_0^2}}{{2\beta}}}$e$\scriptstyle \alpha$t(e$\scriptstyle \beta$t - e-$\scriptstyle \beta$t)  
  = $\displaystyle {\frac{{2\omega_0}}{{\sqrt{\frac{1}{Q^2}-4}}}}$e$\scriptstyle \alpha$tsinh$\displaystyle \beta$t  

A..3.2.1.2 インディシャルレスポンス

V2(s) = $\displaystyle {\frac{{F(s)}}{{s}}}$  
  = $\displaystyle {\frac{{\omega_0^2}}{{s(s^2 + \frac{\omega_0}{Q}s + \omega_0^2)}}}$  
  = $\displaystyle {\frac{{\omega_0^2}}{{s(s-p_1)(s-p_2)}}}$  
v2(t) = $\displaystyle {\frac{{\omega_0^2}}{{p_1 p_2 (p_2-p_1)}}}$[(p2 - p1) - p2ep1t + p1ep2t]  
  = $\displaystyle {\frac{{1}}{{p_2-p_1}}}$[(p2 - p1) - p2e($\scriptstyle \alpha$+$\scriptstyle \beta$)t + p1e($\scriptstyle \alpha$-$\scriptstyle \beta$)t]  
  = 1 - $\displaystyle {\frac{{1}}{{p_2-p_1}}}$e$\scriptstyle \alpha$t(p2e$\scriptstyle \beta$t - p1e-$\scriptstyle \beta$t)  
  = 1 + $\displaystyle {\frac{{1}}{{2\beta}}}$e$\scriptstyle \alpha$t[($\displaystyle \alpha$ - $\displaystyle \beta$)e$\scriptstyle \beta$t - ($\displaystyle \alpha$ + $\displaystyle \beta$)e-$\scriptstyle \beta$t]  
  = 1 + $\displaystyle {\frac{{1}}{{2\beta}}}$e$\scriptstyle \alpha$t[$\displaystyle \alpha$(e$\scriptstyle \beta$t - e-$\scriptstyle \beta$t) - $\displaystyle \beta$(e$\scriptstyle \beta$t + e-$\scriptstyle \beta$t)]  
  = 1 + $\displaystyle {\frac{{1}}{{\beta}}}$e$\scriptstyle \alpha$t($\displaystyle \alpha$sinh$\displaystyle \beta$t - $\displaystyle \beta$cosh$\displaystyle \beta$t)  

A..3.2.2 D = 0 すなわち Q = 1/2 の場合

A..3.2.2.1 インパルスレスポンス

V2(s) = F(s)  
  = $\displaystyle {\frac{{\omega_0^2}}{{s^2 + 2\omega_0 s + \omega_0^2}}}$  
  = $\displaystyle {\frac{{\omega_0^2}}{{(s + \omega_0)^2}}}$  
v2(s) = $\displaystyle \omega_{0}^{2}$te-$\scriptstyle \omega_{0}$t  

A..3.2.2.2 インディシャルレスポンス

V2(s) = $\displaystyle {\frac{{F(s)}}{{s}}}$  
  = $\displaystyle {\frac{{\omega_0^2}}{{s(s^2 + 2\omega_0 {Q}s + \omega_0^2)}}}$  
  = $\displaystyle {\frac{{\omega_0^2}}{{s(s+\omega_0)^2}}}$  
v2(t) = 1 - e-$\scriptstyle \omega_{0}$t - $\displaystyle \omega_{0}^{}$te-$\scriptstyle \omega_{0}$t  
  = 1 - e-$\scriptstyle \omega_{0}$t(1 + $\displaystyle \omega_{0}^{}$t)  

A..3.2.3 D < 0 すなわち Q > 1/2 の場合


b = $\displaystyle {\frac{{\omega_0}}{{2Q}}}$  
a = $\displaystyle {\frac{{\omega_0}}{{2}}}$$\displaystyle \sqrt{{4 - \frac{1}{Q^2}}}$  

とおけば,

F(s) = $\displaystyle {\frac{{\omega_0^2}}{{(s+b)^2+a^2}}}$

A..3.2.3.1 インパルスレスポンス

V2(s) = F(s)  
  = $\displaystyle {\frac{{\omega_0^2}}{{(s+b)^2+a^2}}}$  
v2(t) = $\displaystyle {\frac{{\omega_0^2}}{{a}}}$e-btsin at  
  = $\displaystyle {\frac{{2\omega_0}}{{\sqrt{4-\frac{1}{Q^2}}}}}$e-$\scriptstyle {\frac{{\omega_0}}{{2Q}}}$tsin$\displaystyle {\frac{{\omega_0}}{{2}}}$$\displaystyle \sqrt{{4 - \frac{1}{Q^2}}}$ t  

A..3.2.3.2 インディシャルレスポンス

V2(s) = $\displaystyle {\frac{{F(s)}}{{s}}}$  
  = $\displaystyle {\frac{{\omega_0^2}}{{s[(s+b)^2+a^2]}}}$  
v2(t) = $\displaystyle {\frac{{\omega_0^2}}{{a^2+b^2}}}$[1 - e-bt(cos at + $\displaystyle {\frac{{b}}{{a}}}$sin at)]  
  = 1 - $\displaystyle {\frac{{\omega_0}}{{a}}}$e-$\scriptstyle {\frac{{\omega_0}}{{2Q}}}$tsin(at + tan-1$\displaystyle {\frac{{a}}{{b}}}$)  


next up previous
Next: 参考文献 Up: オーディオのための交流理論入門 Previous: 11 出力段の位相補償
Ayumi Nakabayashi
平成19年12月8日