next up previous
Next: この文書について... Up: 五極管の等価回路 Previous: 3 スクリーングリッドパスコンによる周波数特性


4 QUAD IIの位相反転回路

4.1 スクリーングリッド結合のみ

スクリーングリッド結合のみの等価回路は,図11のようになります.
図 11: スクリーングリッド結合位相反転回路の等価回路
\begin{figure}\input{figs/equiv_sgc}
\end{figure}

等価回路より,以下の関係が成り立ちます.

eg2 = - (gmg2eg - firp1 - firp2)$\displaystyle {\frac{{r_{g2}//R_{g2}}}{{2}}}$ (34)
ep1 = - $\displaystyle \Bigl($gmeg + gm$\displaystyle {\frac{{e_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$$\displaystyle \Bigr)$(rp//RL) (35)
ep2 = - gm$\displaystyle {\frac{{e_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$(rp//RL) (36)
irp1 = $\displaystyle {\frac{{e_{p1}}}{{r_p}}}$ (37)
irp2 = $\displaystyle {\frac{{e_{p2}}}{{r_p}}}$ (38)

式(37), (38)に 式(35), (36)を代入して,

irp1 = - $\displaystyle \Bigl($gmeg + gm$\displaystyle {\frac{{e_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$$\displaystyle \Bigr)$$\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$  
  = - $\displaystyle {\frac{{I_p}}{{I_{g2}}}}$gmg2$\displaystyle \Bigl($eg + $\displaystyle {\frac{{e_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$$\displaystyle \Bigr)$$\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$ (39)
irp2 = - gm$\displaystyle {\frac{{e_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$ . $\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$  
  = - $\displaystyle {\frac{{I_p}}{{I_{g2}}}}$gmg2$\displaystyle {\frac{{e_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$ . $\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$ (40)

式(34)に 式(39), (40)を代入して,

eg2 = - $\displaystyle \Bigl\{$gmg2eg + f$\displaystyle {\frac{{I_p}}{{I_{g2}}}}$gmg2$\displaystyle \Bigl($eg + $\displaystyle {\frac{{2e_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$$\displaystyle \Bigr)$$\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$$\displaystyle \Bigr\}$$\displaystyle {\frac{{r_{g2}//R_{g2}}}{{2}}}$  
  = - $\displaystyle \Bigl\{$gmg2eg$\displaystyle \Bigl($1 + f$\displaystyle {\frac{{I_p}}{{I_{g2}}}}$ . $\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$$\displaystyle \Bigr)$ +2eg2f$\displaystyle {\frac{{I_p}}{{I_{g2}}}}$ . $\displaystyle {\frac{{g_{mg2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$ . $\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$$\displaystyle \Bigr\}$$\displaystyle {\frac{{r_{g2}//R_{g2}}}{{2}}}$  
eg2+f$\displaystyle {\frac{{I_p}}{{I_{g2}}}}$ . $\displaystyle {\frac{{g_{mg2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$(rg2//Rg2)$\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$eg2
  = - gmg2eg$\displaystyle \Bigl($1 + f$\displaystyle {\frac{{I_p}}{{I_{g2}}}}$ . $\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$$\displaystyle \Bigr)$$\displaystyle {\frac{{r_{g2}//R_{g2}}}{{2}}}$  
eg2 = - gmg2eg$\displaystyle {\frac{{1+f\frac{I_p}{I_{g2}}\cdot\frac{R_L}{r_p+R_L}}}{{1 + f\fr...
...p+R_L}\cdot\frac{g_{mg2}}{\micro_{g1\mbox{\scriptsize -}g2}}(r_{g2}//R_{g2})}}}$ . $\displaystyle {\frac{{r_{g2}//R_{g2}}}{{2}}}$  
  = - $\displaystyle {\frac{{g_{mg2}(r_{g2}//R_{g2})e_g}}{{2}}}$ . $\displaystyle {\frac{{1+f\frac{I_p}{I_{g2}}\cdot\frac{R_L}{r_p+R_L}}}{{1 + f\fr...
...p+R_L}\cdot\frac{g_{mg2}}{\micro_{g1\mbox{\scriptsize -}g2}}(r_{g2}//R_{g2})}}}$ (41)

gmg2rg2 $ \approx$ μg1-g2 なので, gmg2(rg2//Rg2) $ \approx$ μg1-g2Rg2/(rg2 + Rg2) より,
eg2 $\displaystyle \approx$ - $\displaystyle {\frac{{\micro_{g1\mbox{\scriptsize -}g2}e_g}}{{2}}}$ . $\displaystyle {\frac{{R_{g2}}}{{r_{g2}+R_{g2}}}}$ . $\displaystyle {\frac{{1+f\frac{I_p}{I_{g2}}\cdot\frac{R_L}{r_p+R_L}}}{{1 + f\frac{I_p}{I_{g2}}\cdot\frac{R_L}{r_p+R_L}\cdot \frac{R_{g2}}{r_{g2}+R_{g2}}}}}$  
  = - $\displaystyle {\frac{{\micro_{g1\mbox{\scriptsize -}g2}e_g}}{{2}}}$ . $\displaystyle {\frac{{1+f\frac{I_p}{I_{g2}}\cdot\frac{R_L}{r_p+R_L}}}{{\frac{r_{g2}}{R_{g2}}+ 1 + f\frac{I_p}{I_{g2}}\cdot\frac{R_L}{r_p+R_L}}}}$ (42)

両相の出力の和は,

- ep1 + ep2 = gmeg(rp//RL) (43)
となり,通常のカソード接地のゲインと一致します.

両相のバランスは,

$\displaystyle {\frac{{e_{p2}}}{{-e_{p1}}}}$ = $\displaystyle {\frac{{-\frac{e_{g2}}{\micro_{g1\mbox{\scriptsize -}g2}}}}{{e_g+\frac{e_{g2}}{\micro_{g1\mbox{\scriptsize -}g2}}}}}$ = $\displaystyle {\frac{{-e_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}e_g+e_{g2}}}}$ (44)
より, eg2 = - μg1-g2eg/2 のときに完全になります. これは,式(42)において, Rg2$ \to$$ \infty$ の場合に成り立ちます. すなわち,スクリーングリッドに定電流回路を入れてやればバランスが取れます.

4.1.1 数値例


x = f$\displaystyle {\frac{{I_p0}}{{I_{g20}}}}$ . $\displaystyle {\frac{{R_L}}{{r_p+R_L}}}$ = 0.6477 x $\displaystyle {\frac{{1.086}}{{0.231}}}$ x $\displaystyle {\frac{{142.3}}{{3009+142.3}}}$ = 0.137565  
Ax = gmg2(rg2//Rg2) = 0.2735 x (133.3//1000) = 32.162  
Ag2 = - $\displaystyle {\frac{{A_x}}{{2}}}$ . $\displaystyle {\frac{{1 + x}}{{1 + \frac{x A_x}{\micro_{g1\mbox{\scriptsize -}g2}}}}}$ = - $\displaystyle {\frac{{36.162}}{{2}}}$ x $\displaystyle {\frac{{1 + 0.137565}}{{1 + \frac{0.137565 \times 36.162}{36.57}}}}$ = - 16.319  
Ap1 = - gm$\displaystyle \Bigl($1 + $\displaystyle {\frac{{A_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$$\displaystyle \Bigr)$(rp//RL) = - 1.286$\displaystyle \Bigl($1 - $\displaystyle {\frac{{16.319}}{{36.57}}}$$\displaystyle \Bigr)$(3009//142.3) = - 96.78  
Ap2 = - gm$\displaystyle {\frac{{A_{g2}}}{{\micro_{g1\mbox{\scriptsize -}g2}}}}$(rp//RL) = - 1.286$\displaystyle {\frac{{-16.319}}{{36.57}}}$(3009//142.3) = 77.99  
$\displaystyle {\frac{{\vert A_{p2}\vert}}{{\vert A_{p1}\vert}}}$ = $\displaystyle {\frac{{77.99}}{{96.78}}}$ = 0.806 = - 1.88 dB  

4.1.2 シミュレーション

4.1.2.1 6267_sgc.cir

    1 6267 screen grid coupled phase invertor
    2 .INCLUDE 6267.lib
    3 
    4 VI 13 0 DC 0 AC 1
    5 VI2 14 0 DC 0 AC 0
    6 XV1 111 112 13 1 6267
    7 XV2 121 122 14 1 6267
    8 R1 13 0 1.5Meg
    9 R2 91 12 1Meg
   10 R3 91 22 1Meg
   11 C1 12 22 0.1u
   12 RK 1 0 762.5
   13 CK 1 0 1000u
   14 R5 11 91 180k
   15 R6 21 91 180k
   16 VIP1 11 111 DC 0
   17 VIG21 12 112 DC 0
   18 VIP2 21 121 DC 0
   19 VIG22 22 122 DC 0
   20 C2 11 31 0.1u
   21 C3 21 41 0.1u
   22 R7 31 0 680k
   23 R9 41 0 680k
   24 
   25 VB2 91 0 330
   26 
   27 .control
   28 ac dec 10 1k 1k
   29 print abs(v(31)) abs(v(41)) abs(v(112))
   30 .endc
   31 .END

4.1.2.2 結果

    1 
    2 Circuit: 6267 screen grid coupled phase invertor
    3 
    4 abs(v(31)) = 9.677640e+01
    5 abs(v(41)) = 7.798516e+01
    6 abs(v(112)) = 1.631999e+01


next up previous
Next: この文書について... Up: 五極管の等価回路 Previous: 3 スクリーングリッドパスコンによる周波数特性

平成17年2月16日