Subsections

A. サレン・キー型フィルタの特性

一般的なサレン・キー型フィルタの回路を,図13に示します.
図 13: サレン・キー型フィルタの回路
\begin{figure}\input{sk_sch}
\end{figure}
それぞれの電流と電圧の関係を式で表すと,
i1 = $\displaystyle {\frac{{v_i - v_x}}{{Z_1}}}$ (3)
i2 = $\displaystyle {\frac{{v_o - v_x}}{{Z_2}}}$ (4)
i3 = $\displaystyle {\frac{{v_x}}{{Z_3 + Z_4}}}$ (5)
i3 = $\displaystyle {\frac{{v_o}}{{K Z_4}}}$ (6)
i3 = i1 + i2 (7)

式(5), (6)より,i3 を消去して vx について解くと,

vx = $\displaystyle {\frac{{Z_3 + Z_4}}{{K Z_4}}}$vo (8)
これを式(3), (4)に代入して,
i1 = $\displaystyle {\frac{{v_i - \frac{Z_3 + Z_4}{K Z_4} v_o}}{{Z_1}}}$ = $\displaystyle {\frac{{K Z_4 v_i - (Z_3 + Z_4) v_o}}{{K Z_1 Z_4}}}$ (9)
i2 = $\displaystyle {\frac{{v_o - \frac{Z_3 + Z_4}{K Z_4} v_o}}{{Z_2}}}$ = - $\displaystyle {\frac{{Z_3 + (1 - K) Z_4}}{{K Z_2 Z_4}}}$vo (10)

これらを式(7)に代入して,vo について解く.
$\displaystyle {\frac{{v_o}}{{Z_4}}}$ = $\displaystyle {\frac{{K Z_4 v_i - (Z_3 + Z_4) v_o}}{{K Z_1 Z_4}}}$ - $\displaystyle {\frac{{Z_3 + (1 - K) Z_4}}{{K Z_2 Z_4}}}$vo  
Z1Z2vo = KZ2Z4vi - Z2(Z3 + Z4)vo - Z1{Z3 + (1 - K)Z4}vo  
{Z1Z2 + Z2(Z3 + Z4) + Z1Z3 + (1 - K)Z1Z4}vo = KZ2Z4vi  
vo = $\displaystyle {\frac{{K Z_2 Z_4}}{{Z_1 Z_2 + Z_2 Z_3 + Z_2 Z_4 + Z_1 Z_3 + (1 - K) Z_1 Z_4 }}}$vi  
  = $\displaystyle {\frac{{K}}{{\frac{Z_1 Z_3}{Z_2 Z_4} + \frac{Z_1 + Z_3}{Z_4} + (1 - K) \frac{Z_1}{Z_2} + 1}}}$vi (11)

A..1 LPF


Z1 = R1  
Z2 = $\displaystyle {\frac{{1}}{{s C_1}}}$  
Z3 = R2  
Z4 = $\displaystyle {\frac{{1}}{{s C_2}}}$  

とおくと,式(11)より,
T(s) = $\displaystyle {\frac{{K}}{{s^2 C_1 C_2 R_1 R_2 + s C_2 (R_1 + R_2) + s (1 - K) C_1 R_1 + 1}}}$  
  = $\displaystyle {\frac{{K \frac{1}{C_1 C_2 R_1 R_2}}}{{s^2 + s (\frac{R_1 + R_2}{C_1 R_1 R_2} + \frac{1 - K}{C_2 R_2}) + \frac{1}{C_1 C_2 R_1 R_2}}}}$ (12)
$\displaystyle \omega_{0}^{}$ = 2$\displaystyle \pi$f0 = $\displaystyle {\frac{{1}}{{\sqrt{C_1 C_2 R_1 R_2}}}}$ (13)
Q = $\displaystyle {\frac{{\omega_0}}{{\frac{R_1 + R_2}{C_1 R_1 R_2} + \frac{1 - K}{C_2 R_2}}}}$ = $\displaystyle {\frac{{\sqrt{C_1 C_2 R_1 R_2}}}{{C_1 C_2 R_1 R_2}}}$ . $\displaystyle {\frac{{1}}{{\frac{R_1 + R_2}{C_1 R_1 R_2} + \frac{1 - K}{C_2 R_2}}}}$  
  = $\displaystyle {\frac{{\sqrt{C_1 C_2 R_1 R_2}}}{{C_2 (R_1 + R_2) + (1 - K) C_1 R_1}}}$ (14)

A..2 HPF


Z1 = $\displaystyle {\frac{{1}}{{s C_1}}}$  
Z2 = R1  
Z3 = $\displaystyle {\frac{{1}}{{s C_2}}}$  
Z4 = R2  

とおくと,式(11)より,
T(s) = $\displaystyle {\frac{{K}}{{\frac{1}{s^2 C_1 C_2 R_1 R_2} + \frac{\frac{1}{s C_1} + \frac{1}{s C_2}}{R_2} + (1 - K) \frac{1}{s C_1 R_1} + 1}}}$  
  = $\displaystyle {\frac{{K}}{{\frac{1}{s^2 C_1 C_2 R_1 R_2} + \frac{C_1 + C_2}{s C_1 C_2 R_2} + (1 - K) \frac{1}{s C_1 R_1} + 1}}}$  
  = $\displaystyle {\frac{{K s^2}}{{s^2 + s (\frac{C_1 + C_2}{C_1 C_2 R_2} + \frac{1 - K}{C_1 R_1}) + \frac{1}{C_1 C_2 R_1 R_2}}}}$ (15)
$\displaystyle \omega_{0}^{}$ = 2$\displaystyle \pi$f0 = $\displaystyle {\frac{{1}}{{\sqrt{C_1 C_2 R_1 R_2}}}}$ (16)
Q = $\displaystyle {\frac{{\omega_0}}{{\frac{C_1 + C_2}{C_1 C_2 R_2} + \frac{1 - K}{C_1 R_1}}}}$ = $\displaystyle {\frac{{\sqrt{C_1 C_2 R_1 R_2}}}{{C_1 C_2 R_1 R_2}}}$ . $\displaystyle {\frac{{1}}{{\frac{C_1 + C_2}{C_1 C_2 R_2} + \frac{1 - K}{C_1 R_1}}}}$  
  = $\displaystyle {\frac{{\sqrt{C_1 C_2 R_1 R_2}}}{{(C_1 + C_2) R_1 + (1 - K) C_2 R_2}}}$ (17)

ayumi
2016-12-03