next up previous index
Next: A. 基礎知識 Up: 6. 負帰還(工事中) Previous: 6.2 時定数が2段の場合の周波数特性

6.3 時定数が3段の場合の周波数特性

中域の利得を AM, 低域の時定数を TL1, TL2, TL3 とすると, 低域の利得 AL は次の式で表されます.
AL = AM$\displaystyle {\frac{{1}}{{1+\frac{1}{j\omega T_{L1}}}}}$ . $\displaystyle {\frac{{1}}{{1+\frac{1}{j\omega T_{L2}}}}}$ . $\displaystyle {\frac{{1}}{{1+\frac{1}{j\omega T_{L3}}}}}$  
  = AM$\displaystyle {\frac{{1}}{{1-j\frac{1}{\omega T_{L1}}}}}$ . $\displaystyle {\frac{{1}}{{1-j\frac{1}{\omega T_{L2}}}}}$$\displaystyle {\frac{{1}}{{1-j\frac{1}{\omega T_{L3}}}}}$  

ここで, x = 1/$ \omega$TL1, TL2 = nTL1, TL3 = mTL1 とおくと,
AL = AM$\displaystyle {\frac{{1}}{{1-jx}}}$ . $\displaystyle {\frac{{1}}{{1-jx/n}}}$ . $\displaystyle {\frac{{1}}{{1-jx/m}}}$  
  = AM$\displaystyle {\frac{{1}}{{1-x^2(\frac{1}{n}+\frac{1}{m}+\frac{1}{nm})
- jx(1+\frac{1}{n}+\frac{1}{m}-\frac{x^2}{nm})}}}$  

負帰還率 $ \beta$ の負帰還をかけた場合, 低域の利得 A'Lは次の式のようになります.
A'L = $\displaystyle {\frac{{A_L}}{{1+A_L\beta}}}$  
  = $\displaystyle {\frac{{A_M}}{{1-x^2(\frac{1}{n}+\frac{1}{m}+\frac{1}{nm})
- jx(1+\frac{1}{n}+\frac{1}{m}-\frac{x^2}{nm})+A_M\beta}}}$  
  = $\displaystyle {\frac{{A_M}}{{1+A_M\beta-x^2(\frac{1}{n}+\frac{1}{m}+\frac{1}{nm})
- jx(1+\frac{1}{n}+\frac{1}{m}-\frac{x^2}{nm})}}}$  

中域の負帰還量を 1 + AM$ \beta$ = FM とおくと,

A'L = $\displaystyle {\frac{{A_M}}{{F_M-x^2(\frac{1}{n}+\frac{1}{m}+\frac{1}{nm})
- jx(1+\frac{1}{n}+\frac{1}{m}-\frac{x^2}{nm})}}}$ (6.26)
となります. 利得の絶対値 | A'L| は,

| A'L| = AM$\displaystyle {\frac{{1}}{{
\sqrt{\bigl\{F_M-x^2(\frac{1}{n}+\frac{1}{m}+\frac{1}{nm})\bigr\}^2
+ x^2(1+\frac{1}{n}+\frac{1}{m}-\frac{x^2}{nm})^2}}}}$ (6.27)
X = x2 とおくと,式(6.27)の根号の中は,
$\displaystyle \Bigl\{$FM-X$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{n}}}$+$\displaystyle {\frac{{1}}{{m}}}$+$\displaystyle {\frac{{1}}{{nm}}}$$\displaystyle \Bigr)$$\displaystyle \Bigr\}^{2}_{}$+X$\displaystyle \Bigl($1+$\displaystyle {\frac{{1}}{{n}}}$+$\displaystyle {\frac{{1}}{{m}}}$-$\displaystyle {\frac{{X}}{{nm}}}$$\displaystyle \Bigr)^{2}_{}$
  = $\displaystyle {\frac{{X^3}}{{n^2m^2}}}$ + $\displaystyle \Bigl\{$$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{n}}}$ + $\displaystyle {\frac{{1}}{{m}}}$ + $\displaystyle {\frac{{1}}{{nm}}}$$\displaystyle \Bigr)^{2}_{}$ -2$\displaystyle \Bigl($1 + $\displaystyle {\frac{{1}}{{n}}}$ + $\displaystyle {\frac{{1}}{{m}}}$$\displaystyle \Bigr)$$\displaystyle {\frac{{1}}{{nm}}}$$\displaystyle \Bigr\}$X2  
      + $\displaystyle \Bigl\{$$\displaystyle \Bigl($1 + $\displaystyle {\frac{{1}}{{n}}}$ + $\displaystyle {\frac{{1}}{{m}}}$$\displaystyle \Bigr)^{2}_{}$ -2FM$\displaystyle \Bigl($$\displaystyle {\frac{{1}}{{n}}}$ + $\displaystyle {\frac{{1}}{{m}}}$ + $\displaystyle {\frac{{1}}{{nm}}}$$\displaystyle \Bigr)$$\displaystyle \Bigr\}$X + FM2  
  = $\displaystyle {\frac{{1}}{{n^2m^2}}}$[X3 + (n2 + m2 +1)X2 + {(nm + n + m)2 -2FMnm(n + m + 1)}X + n2m2FM2] (6.28)

脚注6.1より, 分母が正の極小値を持つ,すなわち利得にピークが生じる条件は,
- a + $\displaystyle \sqrt{{a^2-3b}}$ > 0  
- b > 0  
2FMnm(n + m + 1) - (nm + n + m)2 > 0  
FM > $\displaystyle {\frac{{(nm+n+m)^2}}{{2nm(n+m+1)}}}$  

ピークの位置は,

x2 = X = $\displaystyle {\frac{{-a+\sqrt{a^2-3b}}}{{3}}}$ = $\displaystyle {\frac{{-a+\sqrt{D}}}{{3}}}$ (6.30)
またその時の利得 | A'Lp| は,
| A'Lp| = AM$\displaystyle {\frac{{nm}}{{\sqrt{\frac{2}{27}D(a-\sqrt{D}) - \frac{1}{9}ab + c}}}}$  
  = AM$\displaystyle {\frac{{nm}}{{\sqrt{-\frac{2}{9}DX - \frac{1}{9}ab + c}}}}$  


next up previous index
Next: A. 基礎知識 Up: 6. 負帰還(工事中) Previous: 6.2 時定数が2段の場合の周波数特性
Ayumi Nakabayashi
平成19年6月28日